
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 499

cussed, with emphasis on arithmetic expression code generation. This chapter
includes a discussion of fundamental code-block optimizations, including redundant
store elimination and common subexpression finding, with a following chapter
discussing straight-line register allocation and temporary storage minimization in
more detail. The book ends with a quick comparative survey of various compiler-
writing systems.

J. T. SCHWARTZ

Courant Institute of Mathematical Sciences
New York University
New York, New York 10012

46[12].--P. J. KIVIAT, R. VILLANEUVA & H. M. MARKOWITZ, The SIMSCRIPT II
Programming Language, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, xiii +
386 pp., 25 cm. Price $10.95 cloth, $6.95 paper.

SIMSCRIPT is a programming language whose primary orientation is towards
the programming of computer simulations, but which has the facilities of a general-
purpose language. The authors of this book have chosen to emphasize the general-
purpose aspects of SIMSCRIPT rather than its simulation capabilities.

Stylistically, SIMSCRIPT is a very "smooth" language, and its design is highly
professional. The syntax, like that of COBOL, is intended to make programs read
like English sentences, though briefer modes of expression are permitted. With the
syntax stripped away, the algebraic part of the language would look like FORTRAN
with a few ALGOL features, such as conditional statements and DO loops with
variable parameters. There are additional facilities for text manipulation and some
rather elaborate report-generating capabilities (quite useful, of course, in simulation
experiments). The input-output is well planned and easy to use.

It is doubtful that SIMSCRIPT would attract many users, however, solely on the
basis of its general-purpose facilities. The strength of the language lies in its capa-
bilities for handling entities, sets and attributes. An entity is a computational object
capable of having attributes, of belonging to sets, and of owning sets; an owned set
may be thought of as a set-valued attribute. The attribute facility may be used to
create PL/I-like structures, though the set operations have no immediate PL/I
counterpart. Entities may be removed from or added to sets in a number of different
ways, corresponding to various forms of queueing.

The simulation facilities are based upon the notions of a system clock, which
keeps track of simulated time, and of events which are computations to be carried
out at a certain point in simulated time. Events may arise either endogonously (inter-
nally generated) or exogonously (externally generated). After all events associated
with the current time are executed, the system clock is simply advanced to the time
of the next scheduled event or events. Execution of an event, of course, can cause the
creation of new events, which may be scheduled at the current time or at later times.

I disagree with the authors' claim that the general-purpose part of SIMSCRIPT
is comparable in power with ALGOL or PL/I. For instance, SIMSCRIPT does not
have the ALGOL block structure, though it does permit recursive functions. It also
lacks certain conveniences such as the ability to start array subscripts at values other

500 REVIEWS AND DESC'RIPTIONS OF TABLES AND BOOKS

than one. The character string variables are of two types: ALPHA variables, which
fit into a single computer word, and TEXT variables, which are arbitrarily long
strings. The distinction between the two is thus implementation-based, and could be
confusing to the neophyte.

The implementation of SIMSCRIPT uses dynamic storage allocation for entities,
and for arrays as well. The result has a great deal of flexibility, though I suspect some
of it at the price of efficiency. The SIMSCRIPT "DO" statement, like the ALGOL
"FOR" statement, permits the parameters of the "DO" to vary as the loop is exe-
cuted; thus, unless the compiler is very clever about it, execution of "DO" loops will
involve a great deal of unnecessary recomputation.

The book is written in five sections, in order of increasing difficulty. They are
described by the authors as:

1. A simple teaching language designed for nonprogrammers.
2. A language comparable in power to FORTRAN.
3. A language comparable in power to ALGOL or PL/I.
4. The entity-attribute-set features of SIMSCRIPT.
5. The simulation-oriented part of SIMSCRIPT.

This arrangement was made for pedagogical reasons, but it does not quite succeed.
An experienced programmer will find the book slow reading if he tries to master
all the details; a novice would have a great deal of difficulty. However, the informa-
tion is all there, and a determined reader will assimilate it sooner or later.

I would recommend this book for those interested in the field of programming
languages, for those who need to write a computer simulation and are shopping
around for a language in which to write it, and for those who are working on prob-
lems where the set and property manipulation facilities of SIMSCRIPT would be
helpful.

PAUL ABRAHAMS

Courant Institute of Mathematical Sciences
New York University
New York, New York 10012

47[12].- -JEAN E. SAMMET, Programming Languages: History and Fundamentals,
Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, xxx $ 785 pp., 24 cm. Price
$18.00 ($13.50 student edition).

Programming Languages: History and Fundamentals is a monumental and en-
cyclopedic treatment of its field. The primary aim of the book, as stated by the
author, is to provide, ". . . in one place, and in a consistent fashion, fundamental
information on programming languages, including history, general characteristics,
similarities,'and differences." This aim has without doubt been achieved, and achieved
well. A second aim is"... to provide specific basic information on all the significant,
and most of the minor, higher level languages developed in the United States." This
aim also has been achieved; there is an impressive collection of about 120 languages
described in varying amounts of detail.

The book is organized into three introductory chapters, six chapters on languages
grouped more or less according to application areas, and two chapters on unimple-

